A SIMPLER MALTSEV CONDITION FOR LOCALLY FINITE DIFFERENCE TERM VARIETIES

Following [3, Def. 5.2], given congruences α, β, γ of an algebra, define $\tau(\alpha, \beta, \gamma)$ to be the transitive closure of $\beta \cup (\alpha \cap (\gamma \circ (\alpha \cap \beta) \circ \gamma))$.

The next theorem is shown by combining results of Kearnes and Szendrei [2, 3]. It slightly improves an observation made in passing at the end of section 1 in [4].

Theorem 0.1. Let \mathcal{V} be a variety for which $\mathbf{F}_{\mathcal{V}}(2)$ is finite. The following are equivalent:

- (1) \mathcal{V} has a difference term.
- (2) For all $\mathbf{A} \in \mathcal{V}$ and $\alpha, \beta, \gamma \in \operatorname{Con} \mathbf{A}$,

$$\alpha \cap (\beta \circ \gamma) \subseteq (\alpha \cap \tau) \circ \gamma \circ \beta$$

where $\tau = \tau(\alpha, \beta, \gamma)$.

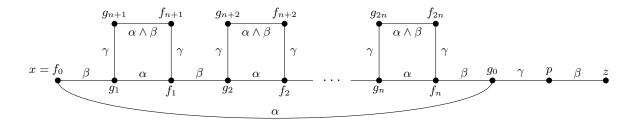
(3) For some n there exist idempotent terms f_i(x, y, z), g_i(x, y, z), 0 ≤ i ≤ 2n, and p(x, y, z) such that the following are identities of V:
(a) f₀(x, y, z) ≈ x
(b) f_i(x, y, x) ≈ g_i(x, y, x) for all i.
(c) f_i(x, x, y) ≈ g_{i+1}(x, x, y) for i < n and f_n(x, x, y) ≈ g₀(x, x, y).
(d) f_{n+i}(x, x, y) ≈ g_{n+i}(x, x, y) for 1 ≤ i ≤ n.
(e) f_i(x, y, y) ≈ f_{n+i}(x, y, y) and g_i(x, y, y) ≈ g_{n+i}(x, y, y) for 1 ≤ i ≤ n.
(f) g₀(x, y, y) = p(x, y, y) and p(x, x, y) ≈ y.

Moreover, if f_i, g_i, p are terms satisfying the identities in (3), then p is a difference term for \mathcal{V} and the pairs (f_i, g_i) witness [4, Theorem 1.2(3)].

Proof. (2) \Leftrightarrow (3) is established in the standard way, and (2) \Rightarrow (1) follows from [4, Theorem 1.2 (2) \Rightarrow (1)] because $\tau \leq \beta_2 := \beta \lor (\alpha \land (\gamma \lor (\alpha \land \beta))).$

To prove $(1) \Rightarrow (3)$, we can replace \mathcal{V} by the subvariety of \mathcal{V} generated by $\mathbf{F}_{\mathcal{V}}(2)$, since the identities in (3) are two-variable identities. Thus we can assume that \mathcal{V} is locally finite. Let $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x, y, z)$ and as usual let $\alpha = \mathrm{Cg}^{\mathbf{F}}(x, z), \beta = \mathrm{Cg}^{\mathbf{F}}(x, y)$ and $\gamma = \mathrm{Cg}^{\mathbf{F}}(y, z)$. Also let $\tau = \tau(\alpha, \beta, \gamma)$. By finiteness of \mathbf{F} and [3, Lemma 5.3], $\alpha - \tau$ contains no 2-snags, so α is solvable over $\alpha \wedge \tau$ by [1, Theorem 7.2]. Hence there exists $m \geq 0$ such that so that $[\alpha]^m \leq \tau$.

By [2, Lemma 2.7], there exists a term p(x, y, z) such that $\mathcal{V} \models p(x, x, y) \approx y$ and $(x, p^{\mathbf{F}}(x, z, z)) \in [\alpha]^m$. Hence $(x, p^{\mathbf{F}}(x, z, z)) \in \alpha \cap \tau$, so $(x, z) \in (\alpha \cap \tau) \circ \gamma \circ \beta$ witnessed by $p^{\mathbf{F}}(x, z, z)$ and $p^{\mathbf{F}}(x, y, z)$. The identities then follow in the standard way, and the "Moreover" claim follows from arguments in [4, Theorem 1.2]. \Box



References

- David Hobby and Ralph McKenzie, The Structure of Finite Algebras. Contemp. Math. 76, Amer. Math. Soc., 1988.
- [2] Keith A. Kearnes, Varieties with a difference term, J. Algebra 177 (1995), 926–960.
- [3] Keith A. Kearnes and Ágnes Szendrei, The relationship between the two commutators, *Internat. J. Algebra Comput.* 8 (1998), 492–531.
- [4] Keith Kearnes, Ágnes Szendrei and Ross Willard, A finite basis theorem for difference-term varieties with a finite residual bound, *Trans. Amer. Math. Soc.* **368** (2016), 2115–2143.